Back to Blog
8 min read

Why Realistic Mock Data Matters: Beyond Lorem Ipsum and Test User 123

Discover how the quality of your mock data directly impacts UI testing, design validation, and user experience. Learn why "Lorem ipsum" and "User 123" are sabotaging your development process.

UXTestingData QualityBest Practices

Why Realistic Mock Data Matters: Beyond Lorem Ipsum and Test User 123

Quick quiz: How many times have you shipped a "perfect" feature to production, only to discover it breaks with real data?

  • Names too long for your UI layout
  • Special characters breaking your validation
  • Edge cases you never tested
  • Performance issues with realistic data volumes

The culprit? Unrealistic mock data during development.

The Problem with Traditional Mock Data

Example 1: The "Lorem Ipsum" Trap

{
  "title": "Lorem ipsum",
  "description": "Lorem ipsum dolor sit amet",
  "author": "Test User"
}

What you miss:

  • Real titles are longer: "Understanding the Implications of Artificial Intelligence on Modern Healthcare Systems: A Comprehensive Analysis"
  • Descriptions have formatting, links, special characters
  • Author names vary: "María José García-Martínez"

The result? Text overflow, broken layouts, and encoding issues in production.


Example 2: The "User 123" Problem

{
  "users": [
    { "id": 1, "name": "User 1", "email": "user1@test.com" },
    { "id": 2, "name": "User 2", "email": "user2@test.com" },
    { "id": 3, "name": "User 3", "email": "user3@test.com" }
  ]
}

What you miss:

  • Name lengths vary dramatically
  • Email addresses can be long: jean-baptiste.poquelin-moliere@university-of-paris-sorbonne.fr
  • Special characters in names: O'Neill, François, 张伟
  • Names that don't fit Western patterns

The result? Layout breaks with real user data.


Example 3: The Date/Time Blindspot

{
  "createdAt": "2024-01-01T00:00:00Z",
  "lastLogin": "2024-01-02T00:00:00Z"
}

What you miss:

  • Timezone issues
  • Relative time calculations ("2 years ago" vs "2 minutes ago")
  • Date formatting edge cases
  • Leap years, daylight saving time

The result? Wrong timestamps, confusing UX, timezone bugs.


The Impact of Unrealistic Data

1. Design Validation Fails

With Lorem Ipsum:

[Card]
Title: Lorem ipsum
Description: Lorem ipsum dolor sit amet, consectetur adipiscing.
Author: Test User

✅ Looks perfect! Ship it!

With Real Data:

[Card]
Title: Understanding the Implications of Artificial Intelligence on Modern Healthcare Systems...
Description: In this comprehensive analysis, we explore how emerging AI technologies are reshaping the landscape of modern medicine, from diagnostic tools to patient care...
Author: Dr. María José García-Martínez, PhD

❌ Title truncated awkwardly, description spills out of container, author name wraps to 3 lines

2. Edge Cases Go Untested

Fake data creates blind spots:

Email validation - Test data:

  • user@test.com
  • admin@example.com

Real user data:

  • name+filter@gmail.com (plus addressing)
  • user@subdomain.company.co.uk (multiple subdomains)
  • françois.léger@société.fr (accented characters)

Result: Your regex breaks in production.

3. Performance Issues Hidden

Test Data:

{
  "comments": [
    { "text": "Nice!" },
    { "text": "Cool!" }
  ]
}

Real Data:

{
  "comments": [
    { "text": "Here's my detailed analysis spanning multiple paragraphs..." }, // 2000+ characters
    { "text": "..." }, // Another 1500 characters
    // ... 50 more comments
  ]
}

Result: Pagination works fine in dev, crashes in production with realistic comment volumes.


What Makes Mock Data "Realistic"?

1. Real Name Diversity

Bad:

["User 1", "User 2", "Test User"]

Good:

[
  "Sarah Mitchell",
  "José García",
  "李明",
  "O'Connor Patrick",
  "Müller Hans",
  "Marie-Claire Dubois"
]

Why it matters:

  • Tests internationalization
  • Reveals layout issues
  • Tests character encoding
  • Validates form input

2. Varied Content Length

Bad: All titles 2 words, all descriptions 1 sentence

Good:

  • Short title: "AI Tools"
  • Medium: "Guide to Modern TypeScript"
  • Long: "Comprehensive Analysis of Distributed Systems Architecture Patterns in Cloud-Native Environments"

Why it matters:

  • Tests responsive design
  • Reveals truncation issues
  • Validates grid layouts
  • Tests loading states

3. Realistic Relationships

Bad:

{
  "order": {
    "items": [{ "name": "Product 1", "price": 10 }],
    "total": 10
  }
}

Good:

{
  "order": {
    "items": [
      { "name": "Wireless Headphones", "price": 129.99, "quantity": 2 },
      { "name": "USB-C Cable (2m)", "price": 15.99, "quantity": 1 }
    ],
    "subtotal": 275.97,
    "tax": 24.83,
    "shipping": 8.99,
    "total": 309.79
  }
}

Why it matters:

  • Tests calculation logic
  • Validates currency formatting
  • Tests edge cases (tax, shipping, discounts)
  • Reveals rounding errors

4. Edge Case Data

Bad: Clean, perfect data every time

Good: Include edge cases:

[
  { "name": "" }, // Empty string
  { "name": "A" }, // Single character
  { "name": "Supercalifragilisticexpialidocious" }, // Very long
  { "name": null }, // Null value
  { "email": "user@domain" }, // Invalid email
  { "age": 0 }, // Zero
  { "age": 150 }, // Unreasonable value
]

Why it matters:

  • Tests validation logic
  • Tests error handling
  • Tests boundary conditions
  • Reveals bugs before production

Real-World Examples: Before & After

Example 1: E-Commerce Dashboard

Before (Fake Data):

const products = [
  { name: "Product 1", price: 10, sales: 100 },
  { name: "Product 2", price: 20, sales: 200 }
]

Issue Found in Production: Product names like "Professional Grade Industrial Compressor 50HP 220V" broke the layout. Price formatting failed with international currencies. Sales numbers in millions caused chart overflow.

After (Realistic Data):

const products = [
  {
    name: "Professional Grade Industrial Compressor 50HP 220V",
    sku: "COMP-IND-50HP-220V-PRO",
    price: 15499.99,
    currency: "EUR",
    sales: 2547891,
    inStock: true,
    category: "Industrial Equipment"
  },
  {
    name: "USB-C Hub",
    sku: "USBC-HUB-7IN1",
    price: 29.99,
    currency: "USD",
    sales: 15,
    inStock: false,
    category: "Electronics"
  }
]

Result: Caught layout issues early, fixed currency formatting, added proper number abbreviation (2.5M instead of 2547891).


Example 2: User Management Table

Before (Fake Data):

const users = [
  { name: "John Doe", email: "john@test.com", role: "Admin" },
  { name: "Jane Smith", email: "jane@test.com", role: "User" }
]

Issue Found in Production: Table columns didn't accommodate long emails. Roles with long names broke the UI. Names with special characters displayed incorrectly.

After (Realistic Data):

const users = [
  {
    name: "Jean-Baptiste Poquelin",
    email: "jean-baptiste.poquelin@theatre-comedie-francaise.fr",
    role: "Senior Administrator & Content Manager",
    lastLogin: "2 minutes ago"
  },
  {
    name: "李明华",
    email: "李明华@公司.中国",
    role: "User",
    lastLogin: "3 months ago"
  }
]

Result: Redesigned table to use responsive columns, added email truncation with tooltip, tested UTF-8 character support.


How to Generate Realistic Mock Data

Option 1: Manual (Time-Consuming)

Write realistic data by hand:

{
  "users": [
    { "name": "Sarah Mitchell", "email": "sarah.mitchell@acme.com", "jobTitle": "Senior Product Designer" },
    { "name": "Carlos Rodríguez", "email": "carlos.rodriguez@techcorp.io", "jobTitle": "Engineering Manager" }
  ]
}

Pros: Full control Cons: Tedious, inconsistent, hard to scale


Option 2: Faker Libraries (Better)

Use libraries like Faker.js:

import { faker } from '@faker-js/faker'

const users = Array.from({ length: 100 }, () => ({
  name: faker.person.fullName(),
  email: faker.internet.email(),
  jobTitle: faker.person.jobTitle(),
  avatar: faker.image.avatar()
}))

Pros: Automated, consistent patterns Cons: Not contextually aware, generic data


Option 3: AI-Powered (Best)

Let AI understand your context:

import { defineEndpoint, m, type Infer } from '@symulate/sdk'

const UserSchema = m.object({
  name: m.person.fullName(),
  email: m.email(),
  jobTitle: m.person.jobTitle(),
  department: m.string()
})

type User = Infer<typeof UserSchema>

const getUsers = defineEndpoint<User[]>({
  path: '/api/users',
  method: 'GET',
  schema: UserSchema,
  mock: {
    count: 100,
    instruction: 'Generate employees from a German tech company with realistic names, email addresses, job titles, and departments like Engineering, Product, Sales, Design'
  }
})

Result:

[
  {
    "name": "Hans Müller",
    "email": "hans.mueller@techgmbh.de",
    "jobTitle": "Senior Backend Engineer",
    "department": "Engineering"
  },
  {
    "name": "Anna Schmidt",
    "email": "anna.schmidt@techgmbh.de",
    "jobTitle": "Product Manager",
    "department": "Product"
  }
]

Pros: Contextually relevant, realistic relationships, domain-aware Cons: Uses AI tokens (but Faker mode is unlimited free fallback)


Testing with Realistic Data

Unit Tests

describe('UserCard component', () => {
  it('handles long names gracefully', () => {
    const user = {
      name: "Dr. Jean-Baptiste Poquelin-Molière III",
      email: "jean-baptiste.poquelin-moliere@university.fr"
    }

    const { container } = render(<UserCard user={user} />)

    // Ensure name doesn't overflow
    const nameElement = container.querySelector('[data-testid="user-name"]')
    expect(nameElement.scrollWidth).toBeLessThanOrEqual(nameElement.clientWidth)
  })

  it('displays email with proper truncation', () => {
    const user = {
      name: "User",
      email: "very-long-email-address-for-testing@subdomain.company.co.uk"
    }

    const { getByText } = render(<UserCard user={user} />)

    // Should truncate with ellipsis
    expect(getByText(/very-long-email.../)).toBeInTheDocument()
  })
})

Visual Regression Tests

describe('Product Grid', () => {
  it('matches snapshot with realistic data', () => {
    const products = [
      {
        name: "Professional Grade Industrial Compressor 50HP 220V",
        price: 15499.99,
        description: "High-performance industrial compressor suitable for manufacturing environments requiring sustained high-pressure air delivery."
      },
      {
        name: "USB-C Cable",
        price: 9.99,
        description: "2m"
      }
    ]

    const { container } = render(<ProductGrid products={products} />)
    expect(container).toMatchSnapshot()
  })
})

Checklist: Is Your Mock Data Realistic?

Ask yourself:

  • Name diversity? Include international names, special characters, varied lengths
  • Email variety? Test long emails, subdomains, international domains
  • Content length? Mix short, medium, and very long content
  • Edge cases? Include null, empty, zero, very large values
  • Realistic relationships? Prices match items, totals calculate correctly
  • Date ranges? Mix recent, old, and future dates
  • Number formats? Include decimals, large numbers, currencies
  • Character encoding? Test UTF-8, emojis, special characters
  • Business logic? Statuses make sense, workflows are realistic

Conclusion

The quality of your mock data directly impacts the quality of your product.

With Lorem Ipsum and "User 123":

  • ❌ Missed layout issues
  • ❌ Untested edge cases
  • ❌ Production surprises
  • ❌ User frustration

With Realistic Mock Data:

  • ✅ Catch bugs early
  • ✅ Test real scenarios
  • ✅ Validate design decisions
  • ✅ Ship with confidence

Stop testing with fake data. Start building with confidence.

Ready for realistic mock data? Try Symulate with AI-generated contextually relevant data. Get 20K free tokens plus unlimited Faker mode.


Further Reading:

Ready to try Symulate?

Start building frontends without waiting for backend APIs. Get 100K free AI tokens.

Sign Up Free