Why Realistic Mock Data Matters: Beyond Lorem Ipsum and Test User 123
Quick quiz: How many times have you shipped a "perfect" feature to production, only to discover it breaks with real data?
- Names too long for your UI layout
- Special characters breaking your validation
- Edge cases you never tested
- Performance issues with realistic data volumes
The culprit? Unrealistic mock data during development.
The Problem with Traditional Mock Data
Example 1: The "Lorem Ipsum" Trap
{
"title": "Lorem ipsum",
"description": "Lorem ipsum dolor sit amet",
"author": "Test User"
}
What you miss:
- Real titles are longer: "Understanding the Implications of Artificial Intelligence on Modern Healthcare Systems: A Comprehensive Analysis"
- Descriptions have formatting, links, special characters
- Author names vary: "María José García-Martínez"
The result? Text overflow, broken layouts, and encoding issues in production.
Example 2: The "User 123" Problem
{
"users": [
{ "id": 1, "name": "User 1", "email": "user1@test.com" },
{ "id": 2, "name": "User 2", "email": "user2@test.com" },
{ "id": 3, "name": "User 3", "email": "user3@test.com" }
]
}
What you miss:
- Name lengths vary dramatically
- Email addresses can be long:
jean-baptiste.poquelin-moliere@university-of-paris-sorbonne.fr - Special characters in names:
O'Neill,François,张伟 - Names that don't fit Western patterns
The result? Layout breaks with real user data.
Example 3: The Date/Time Blindspot
{
"createdAt": "2024-01-01T00:00:00Z",
"lastLogin": "2024-01-02T00:00:00Z"
}
What you miss:
- Timezone issues
- Relative time calculations ("2 years ago" vs "2 minutes ago")
- Date formatting edge cases
- Leap years, daylight saving time
The result? Wrong timestamps, confusing UX, timezone bugs.
The Impact of Unrealistic Data
1. Design Validation Fails
With Lorem Ipsum:
[Card]
Title: Lorem ipsum
Description: Lorem ipsum dolor sit amet, consectetur adipiscing.
Author: Test User
✅ Looks perfect! Ship it!
With Real Data:
[Card]
Title: Understanding the Implications of Artificial Intelligence on Modern Healthcare Systems...
Description: In this comprehensive analysis, we explore how emerging AI technologies are reshaping the landscape of modern medicine, from diagnostic tools to patient care...
Author: Dr. María José García-Martínez, PhD
❌ Title truncated awkwardly, description spills out of container, author name wraps to 3 lines
2. Edge Cases Go Untested
Fake data creates blind spots:
Email validation - Test data:
user@test.com✅admin@example.com✅
Real user data:
name+filter@gmail.com(plus addressing)user@subdomain.company.co.uk(multiple subdomains)françois.léger@société.fr(accented characters)
Result: Your regex breaks in production.
3. Performance Issues Hidden
Test Data:
{
"comments": [
{ "text": "Nice!" },
{ "text": "Cool!" }
]
}
Real Data:
{
"comments": [
{ "text": "Here's my detailed analysis spanning multiple paragraphs..." }, // 2000+ characters
{ "text": "..." }, // Another 1500 characters
// ... 50 more comments
]
}
Result: Pagination works fine in dev, crashes in production with realistic comment volumes.
What Makes Mock Data "Realistic"?
1. Real Name Diversity
Bad:
["User 1", "User 2", "Test User"]
Good:
[
"Sarah Mitchell",
"José García",
"李明",
"O'Connor Patrick",
"Müller Hans",
"Marie-Claire Dubois"
]
Why it matters:
- Tests internationalization
- Reveals layout issues
- Tests character encoding
- Validates form input
2. Varied Content Length
Bad: All titles 2 words, all descriptions 1 sentence
Good:
- Short title: "AI Tools"
- Medium: "Guide to Modern TypeScript"
- Long: "Comprehensive Analysis of Distributed Systems Architecture Patterns in Cloud-Native Environments"
Why it matters:
- Tests responsive design
- Reveals truncation issues
- Validates grid layouts
- Tests loading states
3. Realistic Relationships
Bad:
{
"order": {
"items": [{ "name": "Product 1", "price": 10 }],
"total": 10
}
}
Good:
{
"order": {
"items": [
{ "name": "Wireless Headphones", "price": 129.99, "quantity": 2 },
{ "name": "USB-C Cable (2m)", "price": 15.99, "quantity": 1 }
],
"subtotal": 275.97,
"tax": 24.83,
"shipping": 8.99,
"total": 309.79
}
}
Why it matters:
- Tests calculation logic
- Validates currency formatting
- Tests edge cases (tax, shipping, discounts)
- Reveals rounding errors
4. Edge Case Data
Bad: Clean, perfect data every time
Good: Include edge cases:
[
{ "name": "" }, // Empty string
{ "name": "A" }, // Single character
{ "name": "Supercalifragilisticexpialidocious" }, // Very long
{ "name": null }, // Null value
{ "email": "user@domain" }, // Invalid email
{ "age": 0 }, // Zero
{ "age": 150 }, // Unreasonable value
]
Why it matters:
- Tests validation logic
- Tests error handling
- Tests boundary conditions
- Reveals bugs before production
Real-World Examples: Before & After
Example 1: E-Commerce Dashboard
Before (Fake Data):
const products = [
{ name: "Product 1", price: 10, sales: 100 },
{ name: "Product 2", price: 20, sales: 200 }
]
Issue Found in Production: Product names like "Professional Grade Industrial Compressor 50HP 220V" broke the layout. Price formatting failed with international currencies. Sales numbers in millions caused chart overflow.
After (Realistic Data):
const products = [
{
name: "Professional Grade Industrial Compressor 50HP 220V",
sku: "COMP-IND-50HP-220V-PRO",
price: 15499.99,
currency: "EUR",
sales: 2547891,
inStock: true,
category: "Industrial Equipment"
},
{
name: "USB-C Hub",
sku: "USBC-HUB-7IN1",
price: 29.99,
currency: "USD",
sales: 15,
inStock: false,
category: "Electronics"
}
]
Result: Caught layout issues early, fixed currency formatting, added proper number abbreviation (2.5M instead of 2547891).
Example 2: User Management Table
Before (Fake Data):
const users = [
{ name: "John Doe", email: "john@test.com", role: "Admin" },
{ name: "Jane Smith", email: "jane@test.com", role: "User" }
]
Issue Found in Production: Table columns didn't accommodate long emails. Roles with long names broke the UI. Names with special characters displayed incorrectly.
After (Realistic Data):
const users = [
{
name: "Jean-Baptiste Poquelin",
email: "jean-baptiste.poquelin@theatre-comedie-francaise.fr",
role: "Senior Administrator & Content Manager",
lastLogin: "2 minutes ago"
},
{
name: "李明华",
email: "李明华@公司.中国",
role: "User",
lastLogin: "3 months ago"
}
]
Result: Redesigned table to use responsive columns, added email truncation with tooltip, tested UTF-8 character support.
How to Generate Realistic Mock Data
Option 1: Manual (Time-Consuming)
Write realistic data by hand:
{
"users": [
{ "name": "Sarah Mitchell", "email": "sarah.mitchell@acme.com", "jobTitle": "Senior Product Designer" },
{ "name": "Carlos Rodríguez", "email": "carlos.rodriguez@techcorp.io", "jobTitle": "Engineering Manager" }
]
}
Pros: Full control Cons: Tedious, inconsistent, hard to scale
Option 2: Faker Libraries (Better)
Use libraries like Faker.js:
import { faker } from '@faker-js/faker'
const users = Array.from({ length: 100 }, () => ({
name: faker.person.fullName(),
email: faker.internet.email(),
jobTitle: faker.person.jobTitle(),
avatar: faker.image.avatar()
}))
Pros: Automated, consistent patterns Cons: Not contextually aware, generic data
Option 3: AI-Powered (Best)
Let AI understand your context:
import { defineEndpoint, m, type Infer } from '@symulate/sdk'
const UserSchema = m.object({
name: m.person.fullName(),
email: m.email(),
jobTitle: m.person.jobTitle(),
department: m.string()
})
type User = Infer<typeof UserSchema>
const getUsers = defineEndpoint<User[]>({
path: '/api/users',
method: 'GET',
schema: UserSchema,
mock: {
count: 100,
instruction: 'Generate employees from a German tech company with realistic names, email addresses, job titles, and departments like Engineering, Product, Sales, Design'
}
})
Result:
[
{
"name": "Hans Müller",
"email": "hans.mueller@techgmbh.de",
"jobTitle": "Senior Backend Engineer",
"department": "Engineering"
},
{
"name": "Anna Schmidt",
"email": "anna.schmidt@techgmbh.de",
"jobTitle": "Product Manager",
"department": "Product"
}
]
Pros: Contextually relevant, realistic relationships, domain-aware Cons: Uses AI tokens (but Faker mode is unlimited free fallback)
Testing with Realistic Data
Unit Tests
describe('UserCard component', () => {
it('handles long names gracefully', () => {
const user = {
name: "Dr. Jean-Baptiste Poquelin-Molière III",
email: "jean-baptiste.poquelin-moliere@university.fr"
}
const { container } = render(<UserCard user={user} />)
// Ensure name doesn't overflow
const nameElement = container.querySelector('[data-testid="user-name"]')
expect(nameElement.scrollWidth).toBeLessThanOrEqual(nameElement.clientWidth)
})
it('displays email with proper truncation', () => {
const user = {
name: "User",
email: "very-long-email-address-for-testing@subdomain.company.co.uk"
}
const { getByText } = render(<UserCard user={user} />)
// Should truncate with ellipsis
expect(getByText(/very-long-email.../)).toBeInTheDocument()
})
})
Visual Regression Tests
describe('Product Grid', () => {
it('matches snapshot with realistic data', () => {
const products = [
{
name: "Professional Grade Industrial Compressor 50HP 220V",
price: 15499.99,
description: "High-performance industrial compressor suitable for manufacturing environments requiring sustained high-pressure air delivery."
},
{
name: "USB-C Cable",
price: 9.99,
description: "2m"
}
]
const { container } = render(<ProductGrid products={products} />)
expect(container).toMatchSnapshot()
})
})
Checklist: Is Your Mock Data Realistic?
Ask yourself:
- Name diversity? Include international names, special characters, varied lengths
- Email variety? Test long emails, subdomains, international domains
- Content length? Mix short, medium, and very long content
- Edge cases? Include null, empty, zero, very large values
- Realistic relationships? Prices match items, totals calculate correctly
- Date ranges? Mix recent, old, and future dates
- Number formats? Include decimals, large numbers, currencies
- Character encoding? Test UTF-8, emojis, special characters
- Business logic? Statuses make sense, workflows are realistic
Conclusion
The quality of your mock data directly impacts the quality of your product.
With Lorem Ipsum and "User 123":
- ❌ Missed layout issues
- ❌ Untested edge cases
- ❌ Production surprises
- ❌ User frustration
With Realistic Mock Data:
- ✅ Catch bugs early
- ✅ Test real scenarios
- ✅ Validate design decisions
- ✅ Ship with confidence
Stop testing with fake data. Start building with confidence.
Ready for realistic mock data? Try Symulate with AI-generated contextually relevant data. Get 20K free tokens plus unlimited Faker mode.
Further Reading:
Ready to try Symulate?
Start building frontends without waiting for backend APIs. Get 100K free AI tokens.
Sign Up Free